A novel microfluidic co-culture system for investigation of bacterial cancer targeting.
نویسندگان
چکیده
Although bacterial cancer targeting in animal models has been previously demonstrated and suggested as a possible therapeutic tool, a thorough understanding of the mechanisms responsible for cancer specificity would be required prior to clinical applications. To visualize bacterial preference for cancer cells over normal cells and to elucidate the cancer-targeting mechanism, a simple microfluidic platform has been developed for in vitro studies. This platform allows simultaneous cultures of multiple cell types in independent culture environments in isolated chambers, and creates a stable chemical gradient across a collagen-filled passage between each of these cell culture chambers and the central channel. The established chemical gradient induces chemotactic preferential migration of bacteria toward a particular cell type for quantitative analysis. As a demonstration, we tested differential bacterial behavior on a two-chamber device where we quantified bacterial preference based on the difference in fluorescence intensities of green fluorescence protein (GFP)-expressing bacteria at two exits of the collagen-filled passages. Analysis of the chemotactic behavior of Salmonella typhimurium toward normal versus cancer hepatocytes using the developed platform revealed an apparent preference for cancer hepatocytes. We also demonstrate that alpha-fetoprotein (AFP) is one of the key chemo-attractants for S. typhimurium in targeting liver cancer.
منابع مشابه
Induction of Apoptosis on K562 Cell Line and Double Strand Breaks on Colon Cancer Cell Line Expressing High Affinity Receptor for Granulocyte Macrophage-Colony Stimulating factor (GM-CSF)
Background: Immunotoxins are comprised of both the cell targeting and the cell killing moieties. We previously established a new immunotoxin, i.e. Shiga toxin granulocyte macrophage-colony stimulating factor (StxA1-GM-CSF), comprises of catalytic domain of Stx, as a killing moiety and GM-CSF, as a cell targeting moiety. In this study, the ability of the immunotoxin to induce apoptosis and dou...
متن کاملطراحی و ساخت سیستم میکروفلوییدی و ارزیابی قابلیت آن جهت تولید اینترلوکین 2 توسط سلول های جورکت
Background and purpose: Microfluidic systems are microstructures that could be used to improve the conventional cell culture protocols used in laboratories. The aim of this research was to design and construct the microfluidic system and evaluating its ability to produce IL-2 by jurkat cells. Material and methods: At first, the sketch of microfluidic canals was designed by Corel draw and wa...
متن کاملTruncated Hepatitis B virus like nanoparticles: A novel drug delivery platform for cancer therapy
Nowadays, Nano-sized drug delivery systems have been studied extensively for theirpotential in cancer therapy. Various drug nanocarriers are being developed including liposomes, micelles, and Virus like nanoparticles (VLNPs). VLNPs offer many advantages for developing smart drug delivery systems due to their precise and repeated structures and relatively large cargo capacities. Truncated ...
متن کاملSynthesis of some Novel Metal Complexes of 4-Hydroxy Benzopyran-2-Ones as Antimicrobial Agent
Complexes of 3-[{3-(3'-bromo phenyl)}-prop-2-enoyl]-4-hydroxy-6-methyl-2H-chromen-2-one with Cu(II), Ni(II), Fe(II), Co(II) and Mn(II) have been synthesized and characterized using elemental analysis, IR spectra and conductivity measurements. These studies revealed that they are having octahedral geometry of the type [ML2 (H2O)2]. In-vitro antimicrobial activity of all synthesized compounds and...
متن کاملMicrofluidic co-culture system for cancer migratory analysis and anti-metastatic drugs screening
Tumour metastasis is an important reason for cancer death, and cancer cell migration is an important step in the process of tumour metastasis. Studying cancer cell migration is of great significance. Here, we present a novel microfluidic co-culture system and establish mild, moderate and severe cancer models by using HMEpiC and MDA-MB-231 cells to study cancer cell migration and anti-cancer dru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 13 15 شماره
صفحات -
تاریخ انتشار 2013